On Zonoids Whose Polars Are Zonoids

نویسندگان

  • Yossi Lonke
  • Y. LONKE
چکیده

Zonoids whose polars are zonoids, cannot have proper faces other than vertices or facets. However, there exist non–smooth zonoids whose polars are zonoids. Examples in R and R are given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex geometry of max-stable distributions

It is shown that max-stable random vectors in [0,∞)d with unit Fréchet marginals are in one to one correspondence with convex sets K in [0,∞)d called max-zonoids. The max-zonoids can be characterised as sets obtained as limits of Minkowski sums of cross-polytopes or, alternatively, as the selection expectation of a random crosspolytope whose distribution is controlled by the spectral measure of...

متن کامل

On the Local Equatorial Characterization of Zonoids and Intersection Bodies

In this paper we show that there is no local equatorial characterization of zonoids in odd dimensions. This gives a negative answer to the conjecture posed by W. Weil in 1977 and shows that the local equatorial characterization of zonoids may be given only in even dimensions. In addition we prove a similar result for intersection bodies and show that there is no local characterization of these ...

متن کامل

Multivariate Lorenz dominance based on zonoids∗

The classical Lorenz curve visualizes and measures the disparity of items which are characterized by a single variable: The more the curve bends, the more scatter the data. Recently a general approach has been proposed and investigated that measures the disparity of multidimensioned items regardless of their dimension. This paper surveys various generalizations of Lorenz curve and Lorenz domina...

متن کامل

Algorithms for bivariate zonoid depth

Zonoid depth is a new notion of data depth proposed by Dy-ckerhoff et al [DKM96]. We give efficient algorithms for solving several zonoid depth problems for 2-dimensional (bi-variate) data. Data depth measures how deep or central a given point 0 in 1 3 2 is relative to a given data cloud or a probability distribution in 1 4 2. Some examples of data depth are halfspace, simplicial, convex hull p...

متن کامل

D ec 1 99 3 Hyperplane conjecture for quotient spaces of L p

which is still the best known estimate for arbitrary convex bodies. Another class consists of convex bodies with small volume ratio with respect to the ellipsoid of minimal volume. This includes the class of zonoids. K. Ball [BA] solved the problem for the duals of zonoids, i.e. unit balls of subspaces of an L1-space, briefly L1-sections. Theorem 1 (K. Ball) For a convex, symmetric body K ⊂ IR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997